Chap 11 - Principle 7: Record-Keeping Procedures

Accurate record keeping is an essential part of a successful HACCP program. Records provide documentation that the critical limits have been met or that appropriate corrective actions were taken when the limits were exceeded. Likewise, they provide a means of monitoring so that process adjustments can be made to prevent a loss of control.

Types of Records Needed

Four kinds of categories are kept as part of the HACCP system:
1. HACCP plan and support documentation used in developing the plan
2. Records of CCP monitoring
3. Records of corrective action
4. Records of verification activities
Chap 11 - Principle 7: Record-Keeping Procedures

Explanatory Note:
Although not required by the seafood HACCP regulation, it is advisable to maintain HACCP-plan support documentation described in this chapter.

- **1. HACCP-Plan Support Documents**

 HACCP-support documents include the information and data used to develop the HACCP plan. This includes the written hazard-analysis worksheet (Chapter 5) and records of any information used in performing the hazard analysis and establishing the critical limits.

 Support documents may include: sufficient data used to establish the adequacy of any barriers to bacterial pathogen growth, to establish the safe shelf life of the product (if age of the product can affect safety), and to establish the adequacy of a heating process in destroying bacterial pathogens. In addition to data, support documents may also include correspondence with consultants or other experts.

 Support documents should also include:
 - A list of the HACCP team and their responsibilities.
 - A summary of the preliminary steps taken in the development of the HACCP plan.
 - Prerequisite programs.

- **2. Monitoring Records**

 HACCP monitoring records are primarily kept to demonstrate control at CCPs. HACCP records provide a useful way to determine if critical limits have been violated. Timely record review by a management representative ensures that the CCPs are being controlled in accordance with the HACCP plan. This was discussed in Chapter 10. Monitoring records also provide a means by which regulators can determine whether a firm is in compliance with its HACCP plan.

 By tracking the values recorded on monitoring records, an operator or manager can determine if a process is approaching its critical limit. Trends can be identified through record review to make necessary process adjustments. If timely adjustments are made before the critical limit is violated, processors can reduce or eliminate the labor and material costs associated with corrective actions.
All HACCP monitoring records should be on forms that contain the following information:
- Form title,
- Firm name and location,
- Time and date,
- Product identification (including product type, package size, processing line and product code, where applicable),
- Actual observation or measurement,
- Critical limits,
- Operator’s signature or initials,
- Reviewer’s signature or initials, and
- Date of review.

Examples of CCP monitoring records may include:
- Storage temperature records for temperature-sensitive ingredients, in-process materials and finished products where temperature control is necessary to ensure product safety.
- Container-seal examination records where the hermetic seal affects product safety.
- Salometer-measurement records where salt brine is used to establish a barrier to bacterial pathogen growth in the finished product.

3. Corrective Action Records
Corrective action records were discussed in Chapter 9.

4. Verification Records
Verification records (Chapter 10) should include:
- Modifications to the HACCP plan (e.g., changes in ingredients, formulations, processing, packaging and distribution);
- Processor audit records verifying supplier compliance with guarantees or certifications;
- Verification of the accuracy and calibration of all monitoring equipment;
- Results of microbiological challenge tests, environmental microbiological tests, and periodic in-line and finished-product microbiological, chemical and physical tests if applicable;
- Results of in-house, on-site inspections; and
- Results of equipment-evaluation tests.

Examples of verification records include:
- Temperature distribution studies for thermal processes.
- Metal detector challenges.
Chap 11 - Principle 7: Record-Keeping Procedures

Record-Monitoring Information

Monitoring information should be recorded at the time the observation is made. False or inaccurate records filled out before the operation takes place or ones that are completed later are inappropriate for a HACCP system.

Computerized Records

Computerized records are an option to manual record keeping. When using computerized records, include controls to ensure that records are authentic, accurate and protected from unauthorized changes.

Record Review

Monitoring records for CCPs and critical-limit deviations must be reviewed in a timely manner by a representative of plant management. All records should be signed or initialed and dated by the reviewer. This subject is discussed more in Chapter 10.

ABC Shrimp Company IQF Cooked-Shrimp Example

Monitoring Records

Sample records are included for each of the monitoring activities identified in columns 4 to 7 of the HACCP plan for IQF cooked shrimp. The names of these forms should be entered in column 10 of the HACCP plan form. These records include:

Figure 1. Raw material evaluation sheet.
This form records the presence or absence of sulfiting agents detected in incoming raw shrimp at the receiving-raw-shrimp step. It is also used to record the vendor’s name and the presence or absence of a supplier’s certificate for incoming frozen shrimp at the receiving-frozen-shrimp step.

Figure 2. Supplier’s guarantee.
This document indicates that the shrimp from this vendor does not contain sulfiting agents.

Figure 3. Shrimp cooker log.
This form is used to record the time and temperature of cooking at the cooker step.

Figure 4. Pack-room inspection record.
The form is used to note that shrimp treated with sulfiting agents are appropriately labeled.
Additional Records

Figure 5. Laboratory results - sulfite residuals.
This document indicates the results of a laboratory analysis for sulfite residual, which is used as a quarterly verification of the supplier’s certification.

Figure 6. Cooking process validation letter.
This document confirms that the cooking critical limits are scientifically sound.

Figure 7. Cooking equipment validation letter.
This document confirms that the temperature throughout the cooking equipment is at or above the critical limit when the equipment is properly operated.

Figure 8. Equipment calibration log.
This form records the results of the quarterly calibration of the MIG thermometers used on the cookers.

Figure 9. Laboratory report - product microbiology.
This document indicates the results of finished product laboratory analyses for total plate count (TPC), coliform bacteria, *Escherichia coli*, *Staphylococcus aureus* and *Salmonella*.

Figure 10. Sample corrective action record.
This record relates to the cooking process records that have been previously discussed. This form is used to document the action taken when a critical limit is exceeded.

Figure 11. Employee Training Record.
This document indicates the training courses completed by each employee.

HACCP Plan Form

|----------|--------|-----------|--------------------|---------------|--------|-------|-------------|----------------------|----------------|-------------|

Specify the record-keeping procedures for each CCP.
Explanatory Note:

Figure 1 also includes information for a variety of nonsafety attributes in addition to the sulfiting agent information. It exemplifies the use of existing forms for HACCP purposes. Some firms may choose to separate their HACCP records from nonsafety control records. Note the critical limits at the bottom of the form.

Figure 1 and Overhead 6

Raw-Material Evaluation Sheet
ABC Shrimp Co., Smithville, GA

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time of Examination:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lot Number:</th>
<th>Declared Wt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Wt:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brand:</th>
<th>Country of Origin:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Packer:</th>
<th>Shrimp Type:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vendor:</th>
<th>Process Type:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frozen Wt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drained Wt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No./Pkg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ct./Lb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Peel					
% Pieces					
% Shell Spots					
Foreign Mat.					
% Meat Spots					
Dehydrated					
% Swimmerets					
% Missing Tail					

Sulfites

<table>
<thead>
<tr>
<th>Sulfites</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Veins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Spines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Discolored</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilge Odor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Certificate for Sulfite Use (Yes/No):

Operator:

Reviewed By: Date:

(Items in bold are part of HACCP record.)
Figure 2 and Overhead 7

Supplier’s Guarantee
East Bay Fishing Co., Yourtown, LA

December 25, 1995
ABC Shrimp Co.
P.O. Box 54
Smithville, GA 43898

Dear Mr. Smith,

This certifies that, in accordance with your purchasing specification, this shipment of frozen shrimp has not been treated with any sulfite compounds — East Bay Lot Number 12345.

Yours truly,
Ira M. Honest
QC Director, East Bay Fishing Co.

Explanatory Note:

Figure 3: Continuous temperature monitoring is performed by a recording thermometer. Manual time and temperature checks are performed every hour, and the operator confirms that the critical limit was continually met since the last reading.

Temperature checks are performed by determining how long it takes a block to move through the steam tunnel using a stopwatch. A comparison between the standard thermometer and the recording thermometer is made daily. A deviation occurred at 4:28 p.m., triggering a corrective action that is documented in Figure 10. Note that during the 5:01 p.m. temperature check, the recording thermometer was reading lower than the standard thermometer. This condition is acceptable as long as the two instruments are as close as reasonably possible. However, it would not be acceptable for the recording thermometer to read higher than the standard thermometer.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Lot Number</th>
<th>Time of Day</th>
<th>Steam Temp. (F)</th>
<th>Temp. from Recorder (F)</th>
<th>Cook Time (Min.)</th>
<th>Critical Limits Met</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>034</td>
<td>2:34 p.m.</td>
<td>214</td>
<td>3.2</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>043</td>
<td>3:30 p.m.</td>
<td>214</td>
<td>3.2</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>053</td>
<td>4:28 p.m.</td>
<td>210</td>
<td>3.1</td>
<td>No</td>
<td>See corrective actions</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>053</td>
<td>4:29 p.m.</td>
<td>212</td>
<td>3.1</td>
<td>Yes Steam valve adjusted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>053</td>
<td>5:01 p.m.</td>
<td>213</td>
<td>212</td>
<td>3.1</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Temperature/time to be checked hourly during operation.

Reviewer: Date:

If critical limits are exceeded, notify the shift supervisor, and separate and identify the batch involved.
Figure 4 and Overhead 9

Pack-Room Inspection Record
ABC Shrimp Co., Smithville, GA

Date: 3/4/95
Line: Number 1 Product: IQF cooked shrimp
Label Room Supervisor: Betty Smith

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>Time of Day</th>
<th>Presence of Sulfiting Agents Yes/No</th>
<th>Sulfite Statement on Label Yes/No</th>
<th>Label Type & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>043</td>
<td>3:45 p.m.</td>
<td>Yes</td>
<td>Yes</td>
<td>ABC 8 oz.</td>
</tr>
<tr>
<td>044</td>
<td>4:45 p.m.</td>
<td>Yes</td>
<td>Yes</td>
<td>Smith Brothers 12 oz.</td>
</tr>
</tbody>
</table>

Reviewer: __________________ Date of Review: ____________

Critical Limits: All shrimp treated with sulfiting agents must be accurately labeled.

Figure 5 and Overhead 10

A-One Laboratory Report for:
ABC Shrimp Co., Smithville, GA

Date: 3/5/95 Sample Number: ABC Shrimp lot# 002
Vendor: East Bay Sulfites, ppm: < 10 ppm
Examined by: Sheila Good
Remarks:

The above sample was analyzed for the presence of sulfites using official AOAC recognized methods.
Figure 6 and Overhead 11

Cooking-Process Validation Letter
Seafood Processing Research and Extension Unit
Your State University

January 5, 1996

ABC Shrimp Co.
P.O. Box 54
Smithville, GA 43898

Dear Mr. Smith:

Various published studies document that a process which provides an internal temperature of 145 F in shrimp is adequate for pasteurization. This supports our studies revealing that pathogenic organisms are destroyed by processing the shrimp at 212 F for three minutes. This process provides an internal temperature above 145 F for a minimum of 15 seconds.

Sincerely,
I.M. Helpful
Seafood Processing Research and Extension Unit
Your State University
Explanatory Note:

Figure 7: Emphasize that all thermal-processing equipment should be tested to verify that it will perform the required process.

Figure 7 and Overhead 12

Cooking-Equipment Validation Letter
Seafood Processing Research and Extension Unit
Your State University

January 5, 1996

ABC Shrimp Co.
P.O. Box 54
Smithville, GA 43898

Dear Mr. Smith:

On Dec. 20, 1995, during a visit to your firm, temperature distribution tests were performed in your shrimp steam cooker on line number one using a portable data logger and 12 thermocouple leads. Test results from three production runs indicated that the temperature distribution in your steam cooker, when operated at a mercury-in-glass reading of 212 F, ranges from 212 F to 214 F. These studies indicate that your steam cooker continues to operate as designed.

On this same date, the internal temperature of six shrimp from individual lots of large (3.5 to 5.0 shrimp per oz.), medium (5.0 to 9.0 shrimp per oz.) and small (9.0 to 17.0 shrimp per oz.) shrimp were measured in the cooker during production runs at 212 F for three minutes. The internal temperature of the large shrimp exceeded 150 F; the medium shrimp, 160 F; and the small shrimp, 165 F. The internal temperatures noted during these tests exceed your firm’s HACCP critical limits of an internal temperature of 145 F for 15 seconds.

Sincerely,
I.M. Helpful
Seafood Processing Research and Extension Unit
Your State University
Figure 8 and Overhead 13

Equipment-Calibration Log
Temperature Measurement
Instrument/Equipment
ABC Shrimp Co., Smithville, GA

Instrument/Equipment: Standard thermometer
Location in Plant: Shrimp Cooker Line Number One
Serial Number: B546
Model Number: Always Right 140 F to 260 F
Date Received in Plant: 3/2/95

<table>
<thead>
<tr>
<th>Date Calibrated</th>
<th>Calibration Results</th>
<th>Method of Calibration</th>
<th>Employee</th>
<th>Reviewer Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/15/95</td>
<td>Thermometer was in calibration.</td>
<td>Tested in steam flow 215 F using certified thermometer S.N. 07569</td>
<td>Sam Smith</td>
<td>Becky Allen 3/18/95</td>
</tr>
<tr>
<td>6/12/95</td>
<td>Thermometer scale adjusted 1 F down to match standard thermometer.</td>
<td>Tested in steam flow 215 F using certified thermometer S.N. 07569</td>
<td>Stan Jones</td>
<td>Becky Allen 6/15/95</td>
</tr>
<tr>
<td>9/10/95</td>
<td>Thermometer was in calibration.</td>
<td>Tested in steam flow 215 F using certified thermometer S.N. 56432</td>
<td>Sam Smith</td>
<td>Joe Noble 9/15/95</td>
</tr>
<tr>
<td>12/2/95</td>
<td>Thermometer was reading 5 F below the standard thermometer scale. Adjusted.</td>
<td>Tested in steam flow 215 F using certified thermometer S.N. 56432</td>
<td>Sam Smith</td>
<td>Becky Allen 12/6/95</td>
</tr>
<tr>
<td>2/29/96</td>
<td>Thermometer was in calibration.</td>
<td>Tested in oil bath 215 F by laboratory using certified thermometer S.N. 56432</td>
<td>Jean Jones</td>
<td>Joe Noble 3/3/96</td>
</tr>
</tbody>
</table>

Explanatory Note:

Figure 8: Emphasize that all monitoring equipment such as thermometers and scales should be checked against a standard. In some cases, this standard may be a boiling-water bath, an ice slush or a known weight, depending upon the instrument and the accuracy requirements for the critical limit being monitored. Note that on the 6/12/89 calibration, the thermometer was 1 F above the standard. This could have an impact on the previously produced product and could have resulted in critical limit deviations. These should be evaluated, and appropriate corrective action should be taken and recorded.
Explanatory Note:

There are situations when the results of a verification activity would necessitate a corrective action. For example, with the positive Salmonella result in Batch 1, it would be appropriate for the processor to hold any of the affected lot still in storage and recall any of the product that was no longer under the processor’s control. Then the processor could recook or destroy the lot. It would also be appropriate to re-evaluate the HACCP plan and its implementation to determine how the defect could have occurred.

Explanatory Note:

Figure 9: Finished product analyses may often be included as part of a firm’s periodic verification efforts. Firms should establish specifications for the microbiological tests that are performed as part of verification.

Figure 9 and Overhead 14

A-One Laboratory Report
ABC Shrimp Co., Smithville, GA

Date: 4/5/96 Sample No.: ABC Shrimp Lot # 0112
Vendor: East Bay Analyst: Sheila Good

The results of the analyses of sample 0112 consisting of 6/8 oz. samples of shrimp identified as batch 1 to 6 are as follows:

<table>
<thead>
<tr>
<th>Batch</th>
<th>T.P.C./g</th>
<th>Coliforms/10g</th>
<th>E. Coli/10g</th>
<th>Staph/g</th>
<th>Salmonella/sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Remarks:

The above sample was analyzed using methods found in the FDA Bacteriological Analytic Manual, 7th Edition.

Irvine R. Wright
Laboratory Director
A-One Laboratories
Jonestown, PA 25418
Corrective-Action Report
ABC Shrimp Co., Smithville, GA

Date: 3/4/96 Lot I.D.: 053

Description of Problem:
At 4:28 p.m., the temperature dropped to 210 F for 30 seconds according to the recorder.

Action Taken:
Temperature drop was noted immediately. Steam valve was adjusted and the product exiting the cooker for the next five minutes was destroyed.

Date Problem Solved: 3/4/96

Current Status:
Remainder of lot is acceptable.

Supervisor: Ollie K. Fellows
Reviewer: Seymour Samples Date: 3/4/96

Explanatory Note:
See Figure 3 for corresponding monitoring record showing process deviation.

Explanatory Note:
Figure 10: The critical limit failure in the first corrective action report would not likely have been noted without the continuous monitoring provided by the recording thermometer. In a continuous cooker, when a temperature drop occurs, the product in the cooker at the time of the deviation must be held and evaluated, recooked, destroyed or shifted to some other acceptable use unless the line can be stopped to give a still cook.
Sanitation in the processing plant, 4-hour course, state inspection service.

Computer operation of the pasteurizer, Best Yet Pasteurizer Co., three days on-the-job training.

Sanitation in the processing plant, 4-hour course, state inspection service, update.

<table>
<thead>
<tr>
<th>Training Course</th>
<th>Date of Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitation in the processing plant, 4-hour course, state inspection service.</td>
<td>July 6, 1994</td>
</tr>
<tr>
<td>Computer operation of the pasteurizer, Best Yet Pasteurizer Co., John Jones,</td>
<td>Feb. 2-5, 1995</td>
</tr>
<tr>
<td>customer representative. three days on-the-job training.</td>
<td></td>
</tr>
<tr>
<td>Sanitation in the processing plant, 4-hour course, state inspection service,</td>
<td>Aug. 3, 1995</td>
</tr>
<tr>
<td>update.</td>
<td></td>
</tr>
</tbody>
</table>
Example: For Illustrative Purposes Only - HACCP Plan Form

ABC Shrimp Co.

Cooked Shrimp

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooker</td>
<td>Survival of bacterial pathogens</td>
<td>Cook at 212°F for three minutes to achieve minimum internal temperature of 145°F for 15 seconds</td>
<td>Cook temperature</td>
<td>Monitor temperature with a continuous temperature recorder</td>
<td>Temperature monitored continuously with hourly visual checks.</td>
<td>Quality-control supervisor will program the continuous-recording thermometer.</td>
<td>Cook will perform the hourly checks.</td>
<td>If temperature or time parameters are not met, then processing line will be stopped and required adjustments made. All product produced during the deviation will be recooked or destroyed</td>
<td>Daily record review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cook time</td>
<td>Monitor cook time by timing the movement of a block placed on belt through cooker.</td>
<td>Cook time monitored hourly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quarterly calibration of internal temperature with hourly continuous processing line thermometer.</td>
</tr>
</tbody>
</table>

Note: In this example, results from product screening at the receiving step are a portion of the monitoring necessary to assure compliance with weigh/pack/label critical limits.

Firm Name: ABC Shrimp Co.
Firm Address: Anywhere, USA
Product Description: Cooked and frozen, headless, peeled and deveined shrimp
Method of Storage and Distribution: Frozen
Intended Use and Consumer: Thaw and serve

Models may not be fully consistent with guidance contained in FDA’s Fish and Fishery Products Hazards and Control Guide.
EXAMPLE: For Illustrative Purposes Only - HACCP Plan Form

ABC Shrimp Co.

Cooked Shrimp

<table>
<thead>
<tr>
<th>(1) Critical Control Point (CCP)</th>
<th>(2) Significant Hazards</th>
<th>(3) Critical Limits for each Control Measure</th>
<th>(4) Monitoring</th>
<th>(5) How</th>
<th>(6) Frequency</th>
<th>(7) Who</th>
<th>(8) Corrective Action(s)</th>
<th>(9) Verification</th>
<th>(10) Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weigh/Pack Label</td>
<td>Allergic-type reaction from undeclared sulfiting agent</td>
<td>All product containing residual sulfiting agent must declare presence</td>
<td>At weigh/pack/label stage, check for "contains sulfite" declaration.</td>
<td>• Examine all labels issued at packing line and match declaration with product identity.</td>
<td>• One label each time a label roll is replaced</td>
<td>• Packing supervisor</td>
<td>If this product is mislabeled, then appropriately label.</td>
<td>• Daily record review</td>
<td>• Pack-room inspection sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At receiving, sample each vessel of fresh shrimp to test for presence of sulfites.</td>
<td>• Rapid sulfite test</td>
<td>• Fresh shrimp, three-grab samples per vessel</td>
<td>• Dock master</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At receiving, supplier declaration for absence of sulfites for frozen shrimp.</td>
<td>• Observation of supplier declaration</td>
<td>• Frozen shrimp, check every shipment</td>
<td>• Dock master</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In this example, results from product screening at the receiving step are a portion of the monitoring necessary to assure compliance with weigh/pack/label critical limits.

Models may not be fully consistent with guidance contained in FDA's Fish and Fishery Products Hazards and Control Guide.